Science, Technology

You won’t believe how fast transistors are

A transistor in a CPU is smaller and faster than a synapse in one of your brain’s neurons by about the same ratio that a wolf is smaller and faster than a hill.

Smaller.

And.

Faster.

CPU: 11nm transistors, 30GHz transition rate (transistors flip significantly faster than overall clock speed)

Neurons: 1µm synapses, 200Hz pulse rate

Wolves: 1.6m long, average range 25 km/day

Hills: 145m tall (widely variable, of course), continental drift 2 cm/year

1µm/11nm ≅ 1.6m/145m
200Hz/30GHz ≅ (Continental drift 2 cm/year) / (Average range 25 km/day)

Advertisements
Standard
Futurology, Software, Technology

Hyperinflation in the attention economy: what succeeds adverts?

Adverts.

Lots of people block them because they’re really really annoying. (Also a major security risk that slows down your browsing experience, but I doubt that’s the main reason.)

Because adverts are executable (who thought that was a good idea?), they also get used for cryptocurrency mining. Really inefficient cryptocurrency mining, but still.

Because they cost money, there is a financial incentive to systematically defraud advertisers by showing lots of real, paid-for, adverts to lots of fake users. (See also: adverts are executable. Can one advert download ten more? Even sneakily in the background will do, the user doesn’t need to see them.)

Because of the faked consumption (amongst other reasons), advertisers don’t get good value for money, lowering demand; because of lowered demand, websites get less money than they would under an efficient system; because of something which seems analogous to hyperinflation (but affecting the supply of spaces in which to advertise rather than the supply of money), websites are crowded with adverts; because of the excess of adverts, lots of people block them.

What if there was a better way?

Cut out the middle man, explicitly fund your website with your own cryptocurrency mining? Users see no adverts, don’t have their attention syphoned away.

Challenge: the problem I’m calling hyperinflation of attention (probably inaccurately, but it’s a good metaphor) would still apply with cryptocurrency mining resource supply. This is already a separate problem with cryptocurrency mining — way too many people are spending way too many resources on something which is only counting and storing value but without fundamentally adding value to the system.

Potential solution: a better cryptocurrency, one which actually does something useful. Useful work such as SETI@home or folding@home — if it must be a currency, then perhaps one where each unit of useful work gets exchanged for a token which can be traded or redeemed with the organisation which produced it, in much the same way that banknotes could, for a long time, be taken to a central bank and exchanged for gold. And the token could be redeemed for whatever is economically useful — a user may perform 1e9 operations now in exchange for a token which would given them 2e9 floating point operations in five years (by which time floating point operations should be 10 times cheaper); or the user decodes two human genomes now in exchange for a token to decode one of their choice later; or whatever.

A separate, but solvable, issue is that the only things I can think of which are processing-power-limited right now are research (climate forecasts, particle physics, brain simulation, simulated drug testing, AI), or used directly by the consumer (video game graphics), or are a colossal waste of resources (bitcoin, spam) — I’ll freely admit this list may be just down to ignorance on my part — so far as I can see, the only one of those which pairs website visitors with actual income would be the video games… but even then it would be utter insanity for the paid customers to have their image rendering offloaded onto the non-payers. The clear solution to this is the same sort of mechanism that currently “solves” advertising: automated auction by those who want to buy your CPU time and websites that want to sell access to your CPU time.

Downside: this will kill you batteries if you don’t disable JavaScript.

Standard
Futurology, Technology

Musk City, Antarctica

One of the criticisms of a Mars colony is that Antarctica is more hospitable in literally every regard (you might argue that the 6-month day and the 6-month night makes it less hospitable, to which I would reply that light bulbs exist and you’d need light bulbs all year round on Mars to avoid SAD-like symptoms).

I’ve just realised the 2017 BFR will be able to get you anywhere in Antarctica, from any launch site on Earth, in no more than 45 minutes, at the cost of long-distance economy passenger flights, and that the Mars plan involves making fuel and oxidiser out of atmospheric CO₂ and frozen water ice so no infrastructure needs to be shipped conventionally before the first landing.

Standard
AI, Futurology

The end of human labour is inevitable, here’s why

OK. So, you might look at state-of-the-art A.I. and say “oh, this uses too much power compared to a human brain” or “this takes too many examples compared to a human brain”.

So far, correct.

But there are 7.6 billion humans: if an A.I. watches all of them all of the time (easy to imagine given around 2 billion of us already have two or three competing A.I. in our pockets all the time, forever listening for an activation keyword), then there is an enormous set of examples with which to train the machine mind.

“But,” you ask, “what about the power consumption?”

Humans cost a bare minimum of $1.25 per day, even if they’re literally slaves and you only pay for food and (minimal) shelter. Solar power can be as cheap as 2.99¢/kWh.

Combined, that means that any A.I. which uses less than 1.742 kilowatts per human-equivalent-part is beating the cheapest possible human — By way of comparison, Google’s first generation Tensor processing unit uses 40 W when busy — in the domain of Go, it’s about 174,969 times as cost efficient as a minimum-cost human, because four of them working together as one can teach itself to play Go better than the best human in… three days.

And don’t forget that it’s reasonable for A.I. to have as many human-equivalent-parts as there are humans performing whichever skill is being fully automated.

Skill. Not sector, not factory, skill.

And when one skill is automated away, when the people who performed that skill go off to retrain on something else, no matter where they are or what they do, there will be an A.I. watching them and learning with them.

Is there a way out?

Sure. All you have to do is make sure you learn a skill nobody else is learning.

Unfortunately, there is a reason why “thinking outside the box” is such a business cliché: humans suck at that style of thinking, even when we know what it is and why it’s important. We’re too social, we copy each other and create by remixing more than by genuinely innovating, even when we think we have something new.

Computers are, ironically, better than humans at thinking outside the box: two of the issues in Concrete Problems in AI Safety are there because machines easily stray outside the boxes we are thinking within when we give them orders. (I suspect that one of the things which forces A.I. to need far more examples to learn things than we humans do is that they have zero preconceived notions, and therefore must be equally open-minded to all possibilities).

Worse, no matter how creative you are, if other humans see you performing a skill that machines have yet to master, those humans will copy you… and then the machines, even today’s machines, will rapidly learn from all the enthusiastic humans who are so gleeful about their new trick to stay one step ahead of the machines, the new skill they can point to and say “look, humans are special, computers can’t do this” right up until the computers do it.

Standard
Science, Technology

Railgun notes #2

[Following previous railgun notes, which has been updated with corrections]

Force:
F = B·I·l
B = 1 tesla

I: Current = Voltage / Resistance
l: Length of armature in meters

F = 1 tesla · V/R · l
F = m · a
∴ a = (1 tesla · V/R · l) / m

Using liquid mercury, let cavity be 1cm square, consider section 1cm long:
∴ l = 0.01 m
Resistivity: 961 nΩ·m
∴ Resistance R = ((961 nΩ·m)*0.01m)/(0.01m^2) = 9.6×10^-7 Ω
Volume: 1 millilitre
∴ Mass m = ~13.56 gram = 1.356e-2 kg
∴ a = (1 tesla · V/(9.6×10^-7 Ω) · (0.01 m)) / (1.356e-2 kg)

Let target velocity = Escape velocity = 11200 m/s = 1.12e4 m/s:
Railgun length s = 1/2 · a · t^2
And v = a · t
∴ t = v / a
∴ s = 1/2 · a · (v / a)^2
∴ s = 1/2 · a · v^2 / a^2
∴ s = 1/2 · v^2 / a
∴ s = 1/2 · ((1.12e4 m/s)^2) / ((1 tesla · V/(9.6×10^-7 Ω) · (0.01 m)) / (1.356e-2 kg))

@250V: s = 0.3266 m (matches previous result)

@1V: s = 81.65 m
I = V/R = 1V / 9.6×10^-7 Ω = 1.042e6 A
P = I · V = 1V · 1.042e6 A = 1.042e6 W

Duration between rails:
t = v / a
∴ t = (1.12e4 m/s) / a
∴ t = (1.12e4 m/s) / ( (1 tesla · V/(9.6×10^-7 Ω) · (0.01 m)) / (1.356e-2 kg) )

(Different formula than before, but produces same values)
@1V: t = 0.01458 seconds

Electrical energy usage: E = P · t
@1V: E = 1.042e6 W · 0.01458 seconds = 1.519e4 joules

Kinetic energy: E = 1/2 · m · v^2 = 8.505e5 joules

Kinetic energy out shouldn’t exceed electrical energy used, so something has gone wrong.

Standard
AI, Software, Technology

Automated detection of propaganda and cultural bias

The ability of word2vec to detect relationships between words (for example that “man” is to “king” as “woman” is to “queen”) can already be used to detect biases. Indeed, the biases are so easy to find, so blatant, that they are embarrassing.

Can this automated detection of cultural bias be used to detect deliberate bias, such as propaganda? It depends in part on how large the sample set is, and in part on how little data the model needs to become effective.

I suspect that such a tool would work only for long-form propaganda, and for detecting people who start to believe and repeat that propaganda: individual tweets — or even newspaper articles — are likely to be far too short for these tools, but the combined output of all their tweets (or a year of some journalist’s articles) might be sufficient.

If it is at all possible, it would of course be very useful. For a few hours, until the propagandists started using the same tool the way we now all use spell checkers — they’re professionals, after all, who will use the best tools money can buy.

That’s the problem with A.I., as well as the promise: it’s a tool for thinking faster, and it’s a tool which is very evenly distributed throughout society, not just in the hands of those we approve of.

Of course… are we right about who we approve of, or is our hatred of Them just because of propaganda we’ve fallen for ourselves?

(Note: I’ve seen people, call them Bobs, saying “x is propaganda”, but I’ve never been able to convince any of the Bobs that they are just as likely to fall for propaganda as the people they are convinced have fallen for propaganda. If you have any suggestions, please comment).

Standard
Technology

iOS or Android?

“What’s best” always depends on what you want to do. This is my impression of which of iOS and Android is better in different circumstances:

Lowest cost Android
Any specific single feature (best camera, dual-sim, FM radio, etc.) Android
Best build quality iOS
Easy to modify Android
Secure from other people modifying it without you knowing iOS
Smart Watch iOS
Smart Watch if you don’t like the Apple Watch Android
Virtual Reality Android
Voice control interface Android
MacOS integration iOS
Meaningful choice of web browsers Android
Standard