Futurology, Science, Technology

Bioprinted fairy drones

As Arthur C. Clarke wrote, any sufficiently advanced technology is indistinguishable from magic. In the case of bioprinted fairy drones, the tech only looks like magic because it isn’t advanced enough.

Bioprinting is the 3D printing of organic material. It’s been demonstrated for years in various different capacities, but the current state-of-the-art suggests that we’re as far from printing a fully-functional organ as a we are from inorganic 3D printers printing a fully-functional car — you can do something that superficially looks right, but doesn’t have all (or even a bare minimum) of the functionality.

Some of the problems bioprinting has are even the same problems that inorganic 3D printing has: There are a lot of different cell (/material) types, and you can’t get away with using the wrong thing. Just as jet engines don’t work too well when 3D printed out of pure plastic, you don’t want to mix up kidney cell types (plural: there are multiple types) with artery cell types.

Other problems are unique to bioprinting: while houses and boats (or rather, the empty shells of houses and boats) are limited only by the range of the printer, organic material has a tendency to die very quickly if it doesn’t get any oxygen, and getting oxygen into tissue without a heart is very difficult. Difficult, but for small things, possible, and that’s where fairies come in.

Fairies, at least in their Victorian-era depictions, are tiny. Not actually small enough to deal with all the oxygen diffusion issues by themselves, but small enough that it’s plausible tissue could be printed in a cryo-preserved state (which does work, just not for human-sized creatures), and then the complete organism thawed out alive when printing is finished. Their diminutive size also makes their wings actually plausible, whereas a human-sized biodrone would need ridiculous wings to fly.

At this point, normal people will be asking ethical questions about their brains and lifespan. As they’ve been printed, this is absolutely the wrong question: you absolutely should not even try to print a brain into them in the first place — and not just because of the ethical dimension! We couldn’t even design a functional brain yet because we don’t actually understand brains very well (if we did, every A.I. question from self-driving cars to social media moderation would already be solved), but even if we understood brains perfectly, the brain and nerve tissues are particularly awkward one to print as axons and dendrites give them pointy bits which go all over the place in ways which directly matter to them being useful.

So, instead of giving them brains, give them WiFi. Instead of eyes, give them cameras. Congratulations, you now have a bioprinted fairy drone.

You may ask: Why?

Fair question. Other than size-fetishists, who benefits from a tiny flying humanoid robot? Well, pretty much everyone. While they couldn’t do any heavy lifting, the entire history of human invention all the way back to the inclined plane, the wheel, and fire, has been to minimise our heavy lifting. What tiny flying human-shaped organic robots can do is not limited to themselves, but part of the entire ecosystem of machines in our world, one of which is swarm robotics that lets them work together much more effectively than a mere team of humans, and at basically the same range of tasks.

So, my answer to “why” is a slight variant on an old meme of a question: Would you rather compete against a single 1.8m tall human, or a thousand pocket-sized fairies all working together?

Standard
AI, Futurology, Science, Software, Technology

The Singularity is Dead, Long Live The Singularity

The Singularity is one form of the idea that machines are constantly being improved and will one day make us all unemployable. Phrased that way, it should be no surprise that discussions of the Singularity are often compared with those of the Luddites from 1816.

“It’s different now!” many people say. Are they right to think that those differences are important?

There have been so many articles and blog posts (and books) about the Singularity that I need to be careful to make clear which type of “Singularity” I’m writing about.

I don’t believe in real infinities. Any of them. Something will get in the way before you reach them. I therefore do not believe in any single runaway process that becomes a deity-like A.I. in a finite time.

That doesn’t stop me worrying about “paperclip optimisers” that are just smart enough to cause catastrophic damage (this already definitely happens even with very dumb A.I.); nor does it stop me worrying about the effect of machines with an IQ of only 200 that can outsmart all but the single smartest human, and rendering mental labour as redundant as physical labour already is, or even an IQ of 85, which would make 15.9% of the world permanently unemployable (some do claim that machines can never be artistic, but, well, machines are already doing “creative” jobs in music, literature and painting, and even if they were not there is a limit as to how many such jobs there can be).

So, for “the Singularity”, what I mean is this:

“A date after which the average human cannot keep up with the rate of progress.”

By this definition, I think it’s already happened. How many people have kept track of these things?:

Most of this was unbelievable science fiction when I was born. Between my birth and 2006, only a few of these things became reality. More than half are things that happened or were invented in the 2010s. When Google’s AlphaGo went up against Lee Sedol he thought he’d easily beat it, 5-0 or 4-1, instead he lost 1-4.

If you’re too young to have a Facebook account, there’s a good chance you’ll never need to learn any foreign language. Or make any physical object. Or learn to drive… there’s a fairly good chance you won’t be allowed to drive. And once you become an adult, if you come up with an invention or a plot for a novel or a motif for a song, there will be at least four billion other humans racing against you to publish it.

Sure, we don’t have a von Neumann probe nor even a clanking replicator at this stage (we don’t even know how to make one yet, unless you count “copy an existing life form”), but given we’ve got 3D printers working at 10 nanometers already, it’s not all that unreasonable to assume we will in the near future. The fact that life exists proves such machines are possible, after all.

None of this is to say humans cannot or will not adapt to change. We’ve been adapting to changes for a long time, we have a lot of experience of adapting to changes, we will adapt more. But there is a question:

“How fast can you adapt?”

Time, as they say, is money. Does it take you a week to learn a new job? A machine that already knows how to do it has a £500 advantage over you. A month? The machine has a £2,200 advantage. You need to get another degree? It has an £80,000 advantage even if the degree was free. That’s just for the average UK salary with none of the extra things employers have to care about.

We don’t face problems just from the machines outsmarting us, we face problems if all the people working on automation can between them outpace any significant fraction of the workforce. And there’s a strong business incentive to pay for such automation, because humans are one of the most expensive things businesses have to pay for.

I don’t have enough of a feeling for economics to guess what might happen if too many people are unemployed and therefore unable to afford the goods produced by machine labour, all I can say is that when I was in secondary school, all of us young enough to be without income, pirating software and music was common. (I was the only one with a Mac, so I had to make do with magazine cover CDs for my software, but I think the observation is still worth something).

Standard
Futurology

The near future

Five years ago, 3D printed kidneys were demonstrated live on stage. Teams like that are working on all the other organs in the human body right now, except for the brain.

Brain–computer interface have been around for much longer. Not that you need them if there isn’t a brain in the body, and plenty of research is going on to create silicon brains for robotic bodies — brains that learn from experience how to walk, or see. Naturally, if a robot knows how to walk, it can be given a higher-level order like “walk forward”, or even “walk to the shops” if you add Google Maps.

Put 3D bio-printing and BCI together, and it looks like remote-controlled organic avatars are in our near future.

My first thought was of bodyguards being more willing to (literally!) take a bullet for their employers, because the bodyguards would be using artificial bodies… but then I realised bodyguards would mostly be redundant because many of the people who currently use bodyguards would be able to use remote controlled bodies themselves, and never be in any real danger in the first place.

Then I thought of soldiers… but why go to the trouble of 3D printing a soft, fragile, organic body for soldiers to control when you could, with far less exciting new developments in bio-printing, manufacture a metal and plastic avatar for your soldiers? Or make them in a non-human shape that better suits military needs?

The next most obvious career it could make redundant is prostitution, depending on what it cost. I know essentially nothing about what life is like for prostitutes, only the scare stories that made it into national media — and yet, all of those threats to life and safety would cease to exist if prostitutes didn’t have to really touch their customers, if they could interact via a remote controlled biological robot.

The flip side (or the same side, depending on your views of prostitution), is that it would make crime easier to commit and harder to prove guilt. You couldn’t tell from the outside if you were looking at a real human, or a printed copy that was remotely controlled. It would mean an end to eye-witnessing/DNA testing/fingerprinting criminals, because such avatars could be of anyone, real or imagined. A simple MRI scan or X-ray wouldn’t be enough, because printing a lump of disconnected brain cells in the shape of a brain would fool such a scan, yet be no more of a person than you would get from sculpting a dozen cattle brains into the same shape.

Standard