Futurology, Science, Technology

Bioprinted fairy drones

As Arthur C. Clarke wrote, any sufficiently advanced technology is indistinguishable from magic. In the case of bioprinted fairy drones, the tech only looks like magic because it isn’t advanced enough.

Bioprinting is the 3D printing of organic material. It’s been demonstrated for years in various different capacities, but the current state-of-the-art suggests that we’re as far from printing a fully-functional organ as a we are from inorganic 3D printers printing a fully-functional car — you can do something that superficially looks right, but doesn’t have all (or even a bare minimum) of the functionality.

Some of the problems bioprinting has are even the same problems that inorganic 3D printing has: There are a lot of different cell (/material) types, and you can’t get away with using the wrong thing. Just as jet engines don’t work too well when 3D printed out of pure plastic, you don’t want to mix up kidney cell types (plural: there are multiple types) with artery cell types.

Other problems are unique to bioprinting: while houses and boats (or rather, the empty shells of houses and boats) are limited only by the range of the printer, organic material has a tendency to die very quickly if it doesn’t get any oxygen, and getting oxygen into tissue without a heart is very difficult. Difficult, but for small things, possible, and that’s where fairies come in.

Fairies, at least in their Victorian-era depictions, are tiny. Not actually small enough to deal with all the oxygen diffusion issues by themselves, but small enough that it’s plausible tissue could be printed in a cryo-preserved state (which does work, just not for human-sized creatures), and then the complete organism thawed out alive when printing is finished. Their diminutive size also makes their wings actually plausible, whereas a human-sized biodrone would need ridiculous wings to fly.

At this point, normal people will be asking ethical questions about their brains and lifespan. As they’ve been printed, this is absolutely the wrong question: you absolutely should not even try to print a brain into them in the first place — and not just because of the ethical dimension! We couldn’t even design a functional brain yet because we don’t actually understand brains very well (if we did, every A.I. question from self-driving cars to social media moderation would already be solved), but even if we understood brains perfectly, the brain and nerve tissues are particularly awkward one to print as axons and dendrites give them pointy bits which go all over the place in ways which directly matter to them being useful.

So, instead of giving them brains, give them WiFi. Instead of eyes, give them cameras. Congratulations, you now have a bioprinted fairy drone.

You may ask: Why?

Fair question. Other than size-fetishists, who benefits from a tiny flying humanoid robot? Well, pretty much everyone. While they couldn’t do any heavy lifting, the entire history of human invention all the way back to the inclined plane, the wheel, and fire, has been to minimise our heavy lifting. What tiny flying human-shaped organic robots can do is not limited to themselves, but part of the entire ecosystem of machines in our world, one of which is swarm robotics that lets them work together much more effectively than a mere team of humans, and at basically the same range of tasks.

So, my answer to “why” is a slight variant on an old meme of a question: Would you rather compete against a single 1.8m tall human, or a thousand pocket-sized fairies all working together?

Futurology, Opinion, Technology


There are many different ways to discuss “post-scarcity”.

The traditional idea is that all material goods are available at no cost, kinda like the replicators in Star Treks TNG and DS9. However, even in the Trek universe, replicators used power, and this allowed replicator rationing to be a plot point in Star Trek Voyager.

Even without a magic Santa Claus machine, you could say post-scarcity happens per-resource and per-location, rather than as a single one-time-covers-everything event. I would argue that Switzerland is post-scarcity for water because it’s available for free in public fountains throughout the country.

By the measure “does it have second-hand value?”, the G7 is post-scarcity for biros and paper, because nobody keeps track of which biro belongs to who or cares if someone steals a pen or a sheet of photocopier paper.

You could even say the G7 is post-scarcity for cups, because you can’t give them away (I’ve tried) — you only pay money for cups because you want that one in particular or you can’t be bothered collecting the free ones other people are throwing out; likewise, the G7 is post-scarcity for hairbands because there are enough clean ones lying on the street you never need to buy them (that observation courtesy of the ridiculous degree of penny-pinching thriftiness which I inherited from my father).

There is at least one more category: things which we have so much of that we harm ourselves by having it. Artificial light — light pollution is a a thing; Food — obesity and conditions associated with it cause 14% of premature deaths in Europe; Communications — spam, personalised propaganda, attention economics.

I wonder what the world would look like if we all had too much of the very things we still strive for precisely because they are not attainable. What could “too much room” in our houses even mean? How could we “travel too much” or “learn too many things”?

Futurology, Minds, Philosophy, Politics, SciFi, Technology, Transhumanism

Sufficient technology

Let’s hypothesise sufficient brain scans. As far as I know, we don’t have better than either very low resolution full-brain imaging (millions of synapses per voxel), or very limited high resolution imaging (thousands of synapses total), at least not for living brains. Let’s just pretend for the sake of argument that we have synapse-resolution full-brain scans of living subjects.

What are the implications?

  • Is a backup of your mind protected by the right to avoid self-incrimination? What about the minds of your pets?
  • Does a backup need to be punished (e.g. prison) if the person it is made from is punished? What if the offence occurred after the backup was made?
  • If the mind state is running rather than offline cold-storage, how many votes do all the copies get? What if they’re allowed to diverge? Which of them is allowed to access the bank accounts or other assets of the original? Is the original entitled to money earned by the copies?
  • If you memorise something and then get backed up, is that copyright infringement?
  • If a mind can run on silicon for less than the cost of food to keep a human healthy, can anyone other than the foremost mind in their respective field ever be employed?
  • If someone is backed up then the original is killed by someone who knows the person was backed up, is that murder, or is it the equivalent of a serious assault that causes a small duration of amnesia?
Psychology, Software, Technology

Social media compulsion

He flashed up a slide of a shelf filled with sugary baked goods. “Just as we shouldn’t blame the baker for making such delicious treats, we can’t blame tech makers for making their products so good we want to use them,” he said. “Of course that’s what tech companies will do. And frankly: do we want it any other way?”The Guardian (website); ‘Our minds can be hijacked’: the tech insiders who fear a smartphone dystopia

I can, in fact, blame bakers. It’s easy: I do it in the same way I blame cigarette manufacturers. In all three cases (sugar/fat/flavour combinations, nicotine, social rewards) they exploit chemical pathways in our brains to get us to do something not in our best interests. They are supernormal stimuli — and given how recent the research is, I can forgive the early tobacconists and confectioners, but tech doesn’t get the luxury of ignorance-as-an-excuse.

I want my technology to be a tool which helps me get stuff done.

A drill is something I pick up, use to make a hole, then put down and forget about until I want to make another hole.

I don’t want a drill which is cursed so that if I ever put it down, I start to feel bad about not making more holes in things, and end up staying up late at night just to find yet one more thing I can drill into.

If I saw in a shop a drill which I knew would do that, I wouldn’t get it even if it was free, never broke, the (included) battery lasted a lifetime, etc. — the cost to the mind wouldn’t be worth it.

The same is true for the addictive elements of social media: I need to be connected to my friends, but I’d rather spend money than risk addiction.

Futurology, Technology

Hyperloop’s secondary purposes

I can’t believe it took me this long (and until watching this video my Isaac Arthur) to realise that Hyperloop is a tech demo for a Launch loop.

I (along with many others) had realised the stated reason for the related–but–separate The Boring Company was silly. My first thought for that was it was a way to get a lot of people underground for a lot of the time, which would reduce the fatalities from a nuclear war. Other people had the much better observation that experience with tunnelling is absolutely vital for any space colony. (It may be notable that BFR is the same diameter as the SpaceX/TBC test tunnel, or it may just be coincidence).

A similar argument applies to Hyperloop as to TBC: Hyperloop is a better normal-circumstances transport system than cars and roads when colonising a new planet.

Science, SciFi, Technology

Kessler-resistant real-life force-fields?

Idle thought at this stage.

The Kessler syndrome (also called the Kessler effect, collisional cascading or ablation cascade), proposed by the NASA scientist Donald J. Kessler in 1978, is a scenario in which the density of objects in low earth orbit (LEO) is high enough that collisions between objects could cause a cascade where each collision generates space debris that increases the likelihood of further collisions.

Kessler syndrome, Wikipedia

If all objects in Earth orbit were required to have an electrical charge (all negative, let’s say), how strong would that charge have to be to prevent collisions?

Also, how long would they remain charged, given the ionosphere, solar wind, Van Allen belts, etc?

Also, how do you apply charge to space junk already present? Rely on it picking up charge when it collides with new objects? Or is it possible to use an electron gun to charge them from a distance? And if so, what’s the trade-off between beam voltage, distance, and maximum charge (presumably shape dependent)?

And if you can apply charge remotely, is this even the best way to deal with them, rather than collecting them all in a large net and de-orbiting them?

Science, Technology

You won’t believe how fast transistors are

A transistor in a CPU is smaller and faster than a synapse in one of your brain’s neurons by about the same ratio that a wolf is smaller and faster than a hill.




CPU: 11nm transistors, 30GHz transition rate (transistors flip significantly faster than overall clock speed)

Neurons: 1µm synapses, 200Hz pulse rate

Wolves: 1.6m long, average range 25 km/day

Hills: 145m tall (widely variable, of course), continental drift 2 cm/year

1µm/11nm ≅ 1.6m/145m
200Hz/30GHz ≅ (Continental drift 2 cm/year) / (Average range 25 km/day)

Futurology, Software, Technology

Hyperinflation in the attention economy: what succeeds adverts?


Lots of people block them because they’re really really annoying. (Also a major security risk that slows down your browsing experience, but I doubt that’s the main reason.)

Because adverts are executable (who thought that was a good idea?), they also get used for cryptocurrency mining. Really inefficient cryptocurrency mining, but still.

Because they cost money, there is a financial incentive to systematically defraud advertisers by showing lots of real, paid-for, adverts to lots of fake users. (See also: adverts are executable. Can one advert download ten more? Even sneakily in the background will do, the user doesn’t need to see them.)

Because of the faked consumption (amongst other reasons), advertisers don’t get good value for money, lowering demand; because of lowered demand, websites get less money than they would under an efficient system; because of something which seems analogous to hyperinflation (but affecting the supply of spaces in which to advertise rather than the supply of money), websites are crowded with adverts; because of the excess of adverts, lots of people block them.

What if there was a better way?

Cut out the middle man, explicitly fund your website with your own cryptocurrency mining? Users see no adverts, don’t have their attention syphoned away.

Challenge: the problem I’m calling hyperinflation of attention (probably inaccurately, but it’s a good metaphor) would still apply with cryptocurrency mining resource supply. This is already a separate problem with cryptocurrency mining — way too many people are spending way too many resources on something which is only counting and storing value but without fundamentally adding value to the system.

Potential solution: a better cryptocurrency, one which actually does something useful. Useful work such as SETI@home or folding@home — if it must be a currency, then perhaps one where each unit of useful work gets exchanged for a token which can be traded or redeemed with the organisation which produced it, in much the same way that banknotes could, for a long time, be taken to a central bank and exchanged for gold. And the token could be redeemed for whatever is economically useful — a user may perform 1e9 operations now in exchange for a token which would given them 2e9 floating point operations in five years (by which time floating point operations should be 10 times cheaper); or the user decodes two human genomes now in exchange for a token to decode one of their choice later; or whatever.

A separate, but solvable, issue is that the only things I can think of which are processing-power-limited right now are research (climate forecasts, particle physics, brain simulation, simulated drug testing, AI), or used directly by the consumer (video game graphics), or are a colossal waste of resources (bitcoin, spam) — I’ll freely admit this list may be just down to ignorance on my part — so far as I can see, the only one of those which pairs website visitors with actual income would be the video games… but even then it would be utter insanity for the paid customers to have their image rendering offloaded onto the non-payers. The clear solution to this is the same sort of mechanism that currently “solves” advertising: automated auction by those who want to buy your CPU time and websites that want to sell access to your CPU time.

Downside: this will kill you batteries if you don’t disable JavaScript.